approximate vt. 1.使接近。 2.接近;走近。 3.近似,約計(jì)。 4.模擬。 5.估計(jì)。 approximate a solution to a problem 使問(wèn)題近于解決。 approximate something to perfection 使某物臻于完善。 The total income this year approximates 10,000 dollors. 今年總收入接近一萬(wàn)元。 approximate the motions of the stars in a planetarium 在天文館中模擬行星的運(yùn)行情況。 We approximated the distance at 100 miles. 我們估計(jì)行程距離為100英里。 vi. 近于。 His income this year approximates to 8,000 dollars. 他今年的收入接近八千美元。 adj. 近似的,大概的。 an approximate account 簡(jiǎn)要的說(shuō)明。 an approximate date 大約的日期。 the approximate estimate 大概的估計(jì)。 an approximate number 概數(shù)。 an approximate value 近似值。 adv. -ly 大體,大致。
In the finite element method, one of the restrictions on the approximating functions is relaxed . 在有限單元方法中,放開(kāi)了定近似函數(shù)的限制。
When adding an entropy function as regularizing term to the lagrangian function , we obtain a smooth approximate function for m ( x ) , which turns out to be the exponential penalty function 當(dāng)將熵函數(shù)作為正則項(xiàng)加到拉格朗日函數(shù)上,我們得到了逐點(diǎn)逼近于m ( x )的光滑函數(shù)。經(jīng)證明,該函數(shù)即為指數(shù)罰函數(shù)。
By constructing approximate functions and using prior estimate and conversion of variable , it is proved that the inverse problem has weak solution for given initial value , boundary value and the oil output 通過(guò)變量和函數(shù)變換,作逼近函數(shù)和估計(jì)等方法,證明了對(duì)給定的初邊值和石油產(chǎn)量,此反問(wèn)題存在弱解。
Ph linearization method is employed to solve a nonlinear reynolds equation for a steady state and micro - scale flow field , and the approximate function expressions of gas dynamic pressure and velocity in the spiral groove are obtained 摘要應(yīng)用ph線性化方法、迭代法,近似求解了螺旋槽內(nèi)穩(wěn)態(tài)微尺度流動(dòng)場(chǎng)的非線性雷諾方程,求得了氣體動(dòng)壓和速度分布的解析解。
2 . for the problem with size , stress and displacement constraints , the stress constraint is transformed into movable lower bounds of sizes , the displacement constraint is transformed into an approximate function which explicitly includes design variables by using mohr integral theory . a mathematical programming model of the optimization problem is set up . the dual programming of the model is approached into a quadratic programming model 2 .對(duì)于尺寸、應(yīng)力和位移約束的問(wèn)題,將應(yīng)力約束化為動(dòng)態(tài)下限,用單位虛荷載方法將位移約束近似顯式化,構(gòu)造優(yōu)化問(wèn)題的數(shù)學(xué)規(guī)劃模型,將其對(duì)偶規(guī)劃處理為二次規(guī)劃問(wèn)題,采用lemke算法進(jìn)行求解,得到滿足尺寸、應(yīng)力和位移約束條件的截面最優(yōu)解。
This feature reflects the physical phenomenon of breaking of waves and development of shock waves . in the fields of fulid dynamics , ( 0 . 2 . 1 ) is an approximation of small visvosity phenomenon . if viscosity ( or the diffusion term , two derivatives ) are added to ( 0 . 2 . 1 ) , it can be researched in the classical way which say that the solutions become very smooth immediately even for coarse inital data because of the diffusion of viscosity . a natural idea ( method of regularity ) is obtained as follows : solutions of the viscous convection - diffusion pr oblem approachs to the solutions of ( 0 . 2 . 1 ) when the viscosity goes to zeros . another method is numerical method such as difference methods , finite element method , spectrum method or finite volume method etc . numerical solutions which is constructed from the numerical scheme approximate to the solutions of the hyperbolic con - ervation laws ( 0 . 2 . 1 ) as the discretation parameter goes to zero . the aim of these two methods is to construct approximate solutions and then to conside the stability of approximate so - lutions ( i , e . the upper bound of approximate solutions in the suitable norms , especally for that independent of the approximate parameters ) . using the compactness framework ( such as bv compactness , l1 compactness and compensated compactness etc ) and the fact that the truncation is small , the approximate function consquence approch to a function which is exactly the solutions of ( 0 . 2 . 1 ) in some sense of definiton 當(dāng)考慮粘性后,即在數(shù)學(xué)上反映為( 0 . 1 . 1 )中多了擴(kuò)散項(xiàng)(二階導(dǎo)數(shù)項(xiàng)) ,即使很粗糙的初始數(shù)據(jù),解在瞬間內(nèi)變的很光滑,這由于流體的粘性擴(kuò)散引起,這種對(duì)流-擴(kuò)散問(wèn)題可用古典的微分方程來(lái)研究。自然的想法就是當(dāng)粘性趨于零時(shí),帶粘性的對(duì)流-擴(kuò)散問(wèn)題的解在某意義下趨于無(wú)粘性問(wèn)題( 0 . 1 . 1 )的解,這就是正則化方法。另一辦法從離散(數(shù)值)角度上研究?jī)H有對(duì)流項(xiàng)的守恒律( 0 . 1 . 1 ) ,如構(gòu)造它的差分格式,甚至更一般的有限體積格式,有限元及譜方法等,從這些格式構(gòu)造近似解(常表現(xiàn)為分片多項(xiàng)式)來(lái)逼近原守恒律的解。